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Temperature profiles in stochastic boundaries 
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Abstract  

During ergodic divertor operation, strong poloidal and radial modulations of the temperature field have been observed in 
stochastic boundaries. Using field line tracing, one finds that steady state modulations are governed by field lines 
stochasticity. A ID radial model is proposed, based on a superimposition of two coupled diffusive networks, a first one 
standing for the transverse diffusion and a second one accounting for the effects of the stochastic parallel transport. 
Modulations are then recovered under some conditions. The model predicts that the temperature in the core plasma is not 
affected by the divertor, which is experimentally verified. 
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1. Introduction 

On Tore Supra, heat extraction and edge plasma control 
can be organized by a specific configuration, the ergodic 
divertor. A set of coils induces an external radial magnetic 
perturbation which presents a toroidal and poloidal spec- 
trum depending on the magnetic equilibrium and on the 
external current level. The spectrum is characterized by a 
main toroidal wave number n = 6 and by poloidal wave 
numbers from m = 12 to m = 24. This configuration gov- 
erns resonant radial modes which are only significant in a 
specific volume defining the perturbed region. For a suffi- 
ciently high level of the perturbation, magnetic surfaces 
are destroyed in this volume, so that the heat diffusion 
process is considerably increased. 

In this paper, we analyze the transport of energy in the 
stochastic volume. We pay a special attention to the tact 
that this volume is finite and therefore sensitive to the 
boundary conditions. The latter are an influx of energy at 
the core boundary and a sink at the wall, volume losses 
such as radiation are not considered. Although we empha- 
size ergodic divertor issues, similar features are to be 
found in others configurations (axisymmetric divertor and 
stellarators). 

In Section 2, experimental results are presented, show- 
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ing a temperature behaviour characterized by poloidal and 
radial modulations and a temperature in the plasma core 
which is not affected by divertor effects. In Section 3, the 
main properties of the magnetic perturbation are investi- 
gated using the field line tracing code Mastoc [4]. A I D 
model is then introduced (Section 4) and allows one to 
compare the limiter and divertor configurations. We find 
that the modulations are recovered and explained by the 
model. The transition between the stochastic and unper- 
turbed volume is also analyzed and a local confining pinch 
velocity is found. 

2. Limiter and divertor temperature profile 

In the following, the temperature field is modelled by 
test particles. The test particles density stands therefore for 
the energy and hence for the plasma temperature at con- 
stant electron and ion density. 

Let us consider a simple 1D diffusion model with no 
volume sources and sinks. The sources and sinks at the 
boundaries are characterized by an energy influx at r =  r o 
and an energy outflux at r = L .  One then expects a 
monotonous and decreasing temperature profile given by, 
assuming a constant diffusion coefficient D± : 

F 
T(O = ~-~](C - r)  : T,~m(") (1) 

where F the influx and L the diffusion area width. This 
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situation is typical of limiter and axisymmetric divertor 
configurations. 

In contrast to these results, radial modulations have 
been measured by a reciprocating double Langmuir probe 
on Tore Supra during the ergodic divertor operation (Fig. 
1). Their main features are to be time independent, regular 
and with a large amplitude, roughly from 15 eV for 
minima up to 30 eV for maxima. In a standard ID 
approach, one would be led to consider volume sources 
and sinks that would alternate regularly. Modulation loca- 
tions seem to depend greatly on the shot conditions: a 
change in the magnetic equilibrium (major radius) led to 
an opposite phase between two successive shots (TS 15518 
and TS 15519), which can be understood by the modifica- 
tion of the field lines connexion properties. The linear and 
decreasing profiles of the electronic density show that the 
particle transport does not drive or behave like the heat 
transport. Furthermore, the low values of the electronic 
density allow us to neglect radiative processes in order to 
explain the temperature modulations. Finally, one must 
remark that these modulations are not always measured. 

On CSTNII, Langmuir probe measurements exhibit 
poloidal structure in the temperature field [1]. It is interest- 
ing to note that the poloidal period of these modulations 
(35 °) corresponds to the main poloidal wave number (m = 
10) of the magnetic perturbation. Similar observations 
have been made for Tore Supra, in a situation character- 
ized by large overlapping of adjacent islands [2]. 

This poloidal pattern suggests that temperature modula- 
tions are governed by the structure of the field lines. This 
argument is backed by noting that the distance between 
two successive maxima roughly follows the distance be- 
tween resonant locations computed with the quasi-linear 
theory (in the range of 0.02 m). 

The third important feature concerns the effect of the 
divertor in the unperturbed region. According to the theo- 
retical analysis, a drop of the temperature is expected in 
the core plasma, resulting from an increase of heat diffu- 
sivity which flattens out the temperature profile in the 
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Fig. 2. Radial deflection of field lines for different initial poloidal 
locations and at r = 0.68 m. 

divertor volume. In contrast to this, Thomson scattering 
measurements on Text showed a temperature gradient 
increase at the separatrix and temperature that reach those 
of the limiter configuration values in the core [3]. A similar 
trend is observed on Tore Supra since the boundary tem- 
perature drop does not affect the core temperature profile. 

3 .  H e a t  t r a n s p o r t  i n  a s t o c h a s t i c  f i e l d  a s  a s u p e r i m p o s i -  

t i o n  o f  t w o  d i f f u s i v e  n e t w o r k s  

In order to link the temperature field and the structure 
of the field lines, the 3D MASTOC code has been used [4]. 
The code computes the magnetic perturbation induced by 
the ergodic divertor and adds it to the main magnetic field. 
One may then follow the field lines through their toroidal 
course and compute their final locations (Figs. 2 and 3). In 
order to take the transverse diffusion into account, the 
toroidal course is limited to a value corresponding to the 
Kolmogorov length. 

On Fig. 2, the radial deflection is displayed for field 
lines initiated at a given radius but with different poloidal 
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Fig. 1. Temperature profile on Tore Supra during ergodic divertor 
operation, measured with a reciprocating double Langmuir probe. 
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Fig. 3. Radial deflection for three field lines as a function of the 
toroidal angle (initial conditions are indicated on Fig. 2). 
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locations. Three particular trajectories are shown on Fig. 3: 
two are radially deflected either towards the wall or to- 
wards the plasma. The third one remains at the same radial 
location. Radial jumps induced by the stochasticity of the 
field lines are therefore only significant in specific poloidal 
regions. The same analysis can be made concerning the 
radial deflection of field lines that have initiated from the 
same poloidal location, but with different initial radial 
locations. This property of large radial jumps specifically 
localized in a poloidal section may be interpreted as a 
bidimensional network which stands for the parallel trans- 
port. One thus replaces a three dimensional problem by a 
two dimensional one. As a test particle can move on the 
deflected field lines towards the plasma core as well as 
towards the wall with an equal probability, the network 
can be considered as diffusive and will be called the 
parallel connection network ( PCN). Though the connex- 
ion movement occurs in the radial direction, the term 
parallel is used to remind that radial jumps (A ~ of the 
order of 10 -2 m) are governed by the parallel transport. 

Let us consider a second network in the radial direc- 
tion. This allows for a test particle either to reverse its 
parallel velocity so that the sites of the PCN can be 
connected in both directions, or to diffuse even if the 
particle is not affected by the PCN, which is clearly the 
case when the particles are located between two radial or 
poloidal successive sites of the PCN. This second network 
is called the transverse diffusive network (TDN) and is 
supposed to be spatially uniform with a characteristic step 
6 (typically a Larmor radius). In the following, we shall 
assume 6 << A. 

The superimposition of both networks may be re- 
strained to a ID model by introducing a probability Po 
which reflects the poloidal extent of the sites of the PCN. 
This probability would typically be given by the ratio 
6 y / y  where (~y is the poloidal characteristic width of a 
site and y, the distance between two successive sites in the 
poloidal direction. One may thus interpret Po as a measure 
of the capability for a test particle to enter the PCN. 

In the case of superimposed networks, a test particle in 
the PCN is allowed to leave it and to enter in the TDN and 
reciprocally. To illustrate this situation, we consider the 
section of a flux tube and the effect of the magnetic 
perturbation on it. As a result of the stochasticity, the 
exponential divergence of neighbouring field lines leads to 
a spreading of the initial area. Very thin regions appear, 
while the measure of the whole area is conserved, as a 
consequence of div B = 0. When the characteristic scale of 
these regions is of the order of 6, the transverse diffusion 
tends to remove test particles from these areas. The coher- 
ence of the temperature field is bounded by such trans- 
verse diffusion process. We therefore introduce a second 
probability Pstoch measuring the capability for a test parti- 
cle to remain in the PCN: P,toch ~ dS'/dS,  where dS is 
the whole area and dS', the part of the area which has a 
typical scale significantly larger than 6. 

The coupling between both networks can thus be ex- 
pressed as a global probability: p =PoP,toch. 

In the following model, we study the diffusion of 
particles along the radial axis. Let r~e p be the location of 
the separatrix which bounds the stochastic region ( r  > rse p) 
and the unperturbed region ( r  < rsep). The latter is charac- 
terized by the existence of a standard diffusion (TDN) with 
a diffusion coefficient D L, while the stochastic region 
contains the PCN in addition to the TDN. The origin r -- 0 
is the location of the energy influx F while on the other 
boundary at r = L, the wall is supposed to be perfectly 
absorbent. 

From the previous section, it results that the probability 
p governs the profile of the test particles density, hence 

p = fi + f i ,  (2) 

where h is the density of the test particles in the PCN and 
fi the density in the TDN. 

4. Test particles density profile 

In the following, radial distances and densities are 
normalized by 6. In steady state, flux conservation may be 
written: 

0F 
F = D ± f r  r , . 4 f i ( x ) d x -  D ± f r r + a f i ( x ) d x - D  ±-Or 

(3) 

FA 
(1 +/4k+,a)~k+, =(1 + & a ) ~ , - - -  f o r k < w - l  

D± 

Eq. (3) gives, for r w_ I < r < L: 

F Oh 
=Hw-lnw L - - -  

D _L Or 

One then has, owing to the boundary condition: 

1 
D ± ( L  - rk) + ~ ( r =  rk) = 1 + H k ~  D-7-1 ( H ~ - '  

a-~ ) 
× 1 + ( H ~ _ j  

(4) 

with the boundary condition ~(L) = 0. 
Eq. (3) can be easily solved in the case of PCN sites 

with a vanishing width i.e., a PCN site extends over a 
single TDN site: 

p(r) ~-~ 
H ( r )  E Hk6(r - -  rk), 

l - p ( r )  k=o 

where 6(r) represents the Dirac function and r k the 
location of the k-site of the PCN. The last site is labelled 
by w - l and the first one by 0. The separatrix location is 
defined by r o = r s e  p .  

One can find a relation between the density in the TDN 
in two successive sites: 
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where ~" = L -  r w_ ~ expresses the distance between the 

last site and the wall. 
The density in the PCN at each site can be deduced 

from the TDN, from Eq. (2). If the probability p is equal 
to zero everywhere (which is always the case in the 
unperturbed region), then H k = 0 for any k and there is 
only one diffusion network. Eq. (4) then allows us to 
recover the result of a standard diffusion process (Eq. (1)), 
that is to say, a monotonous and decreasing profile. 

5 .  M a i n  r e s u l t s  a n d  d i s c u s s i o n  

In the following, profiles have been computed for a 
non-vanishing width of the PCN sites. 

On Fig. 4, we show two profiles of the total density for 
different maximum probabilities (Pmax) on the sites. For 
Pmax ~ 0.5, one can recover steady state modulations. As p 
is further decreased, profiles tend to the limiter configura- 
tion (which is also the asymptotic case when p = 0). For 
Pmax ~ 0.05, one can observe that these modulations have 
nearly disappeared. Since the probability accounts for the 
poloidal location, it may be concluded that radial modula- 
tions depend on the poloidal measurements. This may 
explain why some modulations are not always observed, as 
has been emphasized in Section 2. 

Even though the maxima of the probability are local- 
ized on the sites, the maximum of the modulations are not. 
This is readily understood for sites with a non-vanishing 
width. Indeed, the front of the first site strongly weighs the 
local sink so that it is memorized all along the PCN. One 
then expects a phase-lag between the radial temperature 
modulations and the site locations in the PCN. 

On Fig. 5, we represent for a given radius the test 
particles density as a function of the poloidal location, as 
determined by the poloidal dependence of the probability 
Po. For illustration, we choose p =  1 -  ~ls in(n0)l  with 
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Fig. 4. Radial profile of test particle densities for two different 
values of the probability function. 
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Fig. 5. Poloidal dependence of test particle densities for p = 1 - 
0.81sin 01. 

n = 1 and a = 0.8. One can then remark that a low value 
of p leads to a strong test particles density decrease, so 
that the temperature field is also expected to be strongly 
dependent on the poloidal location and on the stochasticity 
level. 

Since the divertor connexion properties exhibit a 
poloidal period locally governed by the resonant wave 
number, hence m ~ 18, it will induce the same periodicity 
for the probability. Thus, poloidal modulations are pre- 
dicted by the model, as a consequence of the dependence 
of the test particles density on p. Of course, there is no 
reason for the probability to reach its extrema values 0 and 

1. The p function is more likely bounded by Pmin(r) and 
Pmax(r), which determines the actual level of poloidal 
modulations. 

Let us now consider the transition between the ergodic 
region ( r  > r o) and the non-perturbed region ( r  < ro). Eq. 
(4) allows us to compute the density at r = r 0, assuming 
that H 0 = 0. This simply results from the definition of the 
separatrix. The region before the separatrix satisfies the 
condition p ( r ) =  0 everywhere, in contrast to the region 
beyond the separatrix characterized by p(r)  va O. 

One then has: 

F F a - ~  
i i ( r = r ° ) = - D - ~ ( L - r ° ) + - D - - S ~ H ' - '  I + ~H w , 

The first term in the right hand size of the equation is 
exactly the density at r = r 0 in a limiter configuration. 
Looking at the second term, one can easily remark that it is 
always greater or equal to zero. It can thus be concluded 
that n(r o) >_ ntim(ro). Equality occurs when ~" is equal to 
zero or A, which means that the final cell of the PCN is 
exactly located on the wall. 

Because of the flattening of the test particles density in 
the ergodic region, this result leads to an increase of the 
gradient at the separatrix. The increase may be simply 
explained as resulting from a disymmetrical process be- 
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Fig. 6. Radial profiles of test particles in ergodic divertor and 
limiter configurations. 

tween the first PCN site and the lbllowing one. Owing to 
the vanishing coherence of the first site, it does not send 
test particles outwards to the second site so that in this 
transition region, the diffusive process in the PCN is 
changed into an inward convection. We can thus conclude 
that the stochastic region generates a transport barrier 
which allows for a recovery of the confinement, in spite of 
the low confinement boundary associated to the stochastic 
region (Fig. 6). A similar result has been obtained experi- 
mentally from the analysis of impurity transport during the 
ergodic divertor operation on Tore Supra [5]. The observed 
improvement of the confinement is also attributed to an 
inward pinch in the vicinity of the separatfix. 

The convective term if'pinch around the separatrix is 
computed with the following definition: Fpi.c h = F +  D_ 
Vh; the analytical calculation gives 

Fpinch : - - /"  l - i - ' - ~ l  ~ L-rl-k~Hw-ll~-~-HT_I 
As expected, the convective flux is negative, so that it 

generates a transport barrier and increases with the proba- 
bility on the second site. The sharper the transition be- 
tween the unperturbed/stochastic region, the more effi- 
cient is the barrier transport. We emphasize that the con- 
vection only exists in the vicinity of the separatrix in 
contrast to the two diffusive processes which govern the 
transport in the stochastic region. 

6. Conclusion 

The investigation of the field lines behaviour modified 
by a magnetic perturbation establishes that there are re- 
gions which are radially connected owing to the parallel 
transport. This connexion property is equivalent to a 2D 
network, composed by poloidally and radially localized 
sites. Taking a classical transverse diffusion into account, 
one can thus consider heat transport as a superimposition 
of two diffusion networks, with different characteristic 
scales. Neglecting all poloidal diffusion, it is possible to 
study the radial profile and its poloidal dependence by 
defining a probability which describes the poloidal loca- 
tions of the test particles. A second probability coefficient 
is introduced in order to include the coupling between both 
networks, which stands for the balance between transverse 
diffusion and parallel transport. As such, it also governs 
the coherence loss along the parallel direction. A 1D 
model can then be defined in order to compute the density 
of test particles and to establish the main differences 
between the limiter and the ergodic divertor configuration. 
We show that the radial profile of the temperature field 
exhibits three regions. 

The first one, the stochastic region between the wall 
and the separatrix, is characterized by modulations and by 
a lowered confinement as exemplified by the flat tempera- 
ture profile. These modulations may be strongly attenuated 
depending on the poloidal location. The dependence of the 
test particles density on the probability generates poloidal 
modulations of the temperature, according to the poloidal 
modulations of the connexion properties. 

A second region around the separatrix is characterized 
by an increase of the gradient resulting from a local 
convective phenomena (pinch effect) which allows for a 
compensation of the confinement loss in the stochastic 
region. In the third region, the core temperature field is 
unaffected. 
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